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Abstract. In the rapidly evolving landscape of multimodal communi-
cation research, this follow-up to Gregori et al. (2023) [71] explores the
transformative role of machine learning (ML), particularly using multi-
modal large language models, in tracking, augmenting, annotating, and
analyzing multimodal data. Building upon the foundations laid in our
previous work, we explore the capabilities that have emerged over the
past years. The integration of ML allows researchers to gain richer in-
sights from multimodal data, enabling a deeper understanding of hu-
man (and non-human) communication across modalities. In particular,
augmentation methods have become indispensable because they facili-
tate the synthesis of multimodal data and further increase the diversity
and richness of training datasets. In addition, ML-based tools have ac-
celerated annotation processes, reducing human effort while improving
accuracy.
Continued advances in ML and the proliferation of more powerful models
suggest even more sophisticated analyses of multimodal communication,
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e.g., through models like ChatGPT, which can now “understand” images.
This makes it all the more important to assess what these models can
achieve now or in the near future, and what will remain unattainable
beyond that.
We also acknowledge the ethical and practical challenges associated with
these advancements, emphasizing the importance of responsible AI and
data privacy. We must be careful to ensure that benefits are shared eq-
uitably and that technology respects individual rights.
In this paper, we highlight advances in ML-based multimodal research
and discuss what the near future holds. Our goal is to provide insights
into this research stream for both the multimodal research community,
especially in linguistics, and the broader ML community. In this way, we
hope to foster collaboration in an area that is likely to shape the future
of technologically mediated human communication.

Keywords: Multimodal communication · Artificial Intelligence · Large
Language Models · Multimodal Computing · Generative AI

1 Introduction

Text-based systems such as ChatGPT [158], Bard [11], or Llama 2 [202] – so-
called Large Language Models (LLM) – show remarkable results in a variety of
applications. The zero-shot, one-shot, and few-shot capabilities of these models
are particularly notable (c.f. [212,200,119]). This means that even if the model is
presented with an unknown prompt or task for input, the results are usually still
conclusive. They are even considered by some people to be the first step towards
Artificial General Intelligence (“AGI”; [148]). All of these models are currently
based on the transformer architecture [207], which is now also being used very
successfully in other areas of computer science, such as computer vision [104] or
audio processing [47]. The current development now consists of transferring these
models to multimodality, which currently means that the models are trained on
both text and image data [168]. However, there are already transformer-based
architectures that support far more modalities [222].

As successful as these transformer-based models seem to be in generalizing
over the training data, current research suggests that the true quality lies pri-
marily in the training data [77,196,221,88]. It seems like any architecture, given
enough reason, number of parameters, and training effort, can deliver the same
results. This is currently most evident in the field of computer vision, where
different model architectures, like convolutional models vs. transformers, can
achieve competitive results given sufficient training effort [129]. The results of
Yadlowsky et al. [220] also point to a similar interpretation. Their study suggests
that there is limited evidence supporting the notion that the in-context learn-
ing behavior of the models extends beyond their pretraining data in terms of
generalization. Concerning multimodality, this finding is of course particularly
interesting and allows us to draw the following two conclusions: 1. The models
cannot generalize over modalities based on which they have not been trained.
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2. With our current machine learning-based methods, we cannot learn things for
which we cannot generate training data or for which we cannot measure.

Based on this basic premise and the findings to date as well as the current
interpretations of AGI,11 we would like to provide an overview of the following
points and the associated problems in this paper:

(i) Explore the existing state of multimodal systems, detailing their current
functionalities and the scope of tasks they can effectively address (Current
Capabilities).

(ii) Current difficulties in the effective application of these systems in various
scientific fields that deal in some way with multimodality of communication
(Current Obstacles)

(iii) Delve into aspects of multimodal integration that are anticipated to require
more extensive research or technological advancements, outlining the chal-
lenges and complexities (Long-Term Obstacles).

We do not want to examine these points simply from the perspective of com-
puter science, but, like the previous work by Gregori et al., from the broad field
of multimodality communication research (see Section 1.2). This point becomes
particularly clear in Section 3, which specifically examines multimodal commu-
nication analysis from the perspective of several individual disciplines. Mostly
based on concrete examples, the corresponding discussions pinpoint various pro-
cessing needs of multimodal AI tools. Based on this survey, Section 3.10 summa-
rizes some challenges and outlooks for AI innovation in multimodal communi-
cation research. Section 4 attempts a cautious assessment of possible long-term
obstacles of AI systems, including likely future developments and conditions for
potential limitations.

1.1 Goals of this Article

Not least due to advances in Artificial Intelligence (AI), processes are simplified
for the research community, if not made possible in the first place, which were
previously associated with considerable time and costs [128]. We believe that
multimodal research is necessary to advance theoretical research on human and
non-human animal communication. Here, we survey the state-of-the-art of using
AI in this kind of research. In this context, we also want to evaluate what is
already possible today with the help of AI, but also why it is not yet being
used in certain areas. But also what will probably be possible soon and which
problems cannot yet be solved in the long term.

1.2 About Us

We are researchers with different backgrounds working on multimodal commu-
nication, specifically on gestures, sign languages, didactic and clinical aspects of
11 See also the aims of potential ChatGPT successors such as Q* (https:

//www.technologyreview.com/2023/11/27/1083886/unpacking-the-hype-around-
openais-rumored-new-q-model/, accessed 6th December 2023).

https://www.technologyreview.com/2023/11/27/1083886/unpacking-the-hype-around-openais-rumored-new-q-model/
https://www.technologyreview.com/2023/11/27/1083886/unpacking-the-hype-around-openais-rumored-new-q-model/
https://www.technologyreview.com/2023/11/27/1083886/unpacking-the-hype-around-openais-rumored-new-q-model/
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visual communication, animal communication, socio-emotional interaction, and
human-computer interaction systems. Our work contributes to the Priority Pro-
gramme Visual Communication (ViCom), supported by the German Research
Foundation (DFG). ViCom aims at disclosing the specific characteristics of the
visual modality as a communication channel and its interaction with other chan-
nels (especially the acoustic one) to develop models of human communication
and their cognitive and evolutionary foundations [71].

2 AI in Multimodal Communication Research

The intersection of AI and multimodal communication has ushered in a new era
of possibilities, revolutionizing how we understand and facilitate human inter-
action. This trend is being spurred on by the current development of so-called
generative models (or generative AI) [34]. In the realm of text-based models like
ChatGPT [158], the generation of relevant output hinges on formulating a tex-
tual prompt that describes a specified task. This prompt serves as an instruction
for the model, prompting it to generate an appropriate response. This can cre-
ate a dialog between the user and the model, e.g. to further refine the result or
to make new queries based on the answer (prompt chaining).This process can
be further optimized by so-called prompt engineering, i.e. the question of how
a prompt must be formulated so that the system can provide the best possi-
ble response [183]. New models such as GPT4 [158] are not only dependent on
text but can also process and generate images using DALL-E [23]. Probably the
most powerful model at the moment is GEMINI [199]. This model processes in-
put from the following four modalities as input: text, images, audio, and video,
and is capable of generating text and images itself. What is characteristic of
all these generative models, is that all models are trained using large amounts
of training data. (For GEMINI, no exact data on the data set size is currently
known, but it is assumed that the number of tokens is in the trillions.12) In the
context of text data, the training process often involves predicting the next word
in a sequence based on the preceding words. This sequential prediction task helps
the model learn the patterns and structures within the data [219]. This leads us
to several problems with these models and at the same time with current AI in
general. It has been proven that the models do not understand the content of
the training data, but only what a good result looks like [99]. As a result, the
systems like to invent new facts or hallucinate in general [4]. With the learned
structures, these models not only learn what good answers look like but also
(tend to) reproduce the biases that are inherent to some degree to the training
data. For example, racist or sexist content is not uncommon [169]. Even though
the developers of these systems are making more and more efforts to prevent
this (or to eliminate biases ex-post), these barriers can often be circumvented
with clever jailbreaking [127,212,37].

12 https://www.cnbc.com/2023/05/16/googles-palm-2-uses-nearly-five-times-more-
text-data-than-predecessor.html, accessed 13th February 2024.

https://www.cnbc.com/2023/05/16/googles-palm-2-uses-nearly-five-times-more-text-data-than-predecessor.html
https://www.cnbc.com/2023/05/16/googles-palm-2-uses-nearly-five-times-more-text-data-than-predecessor.html
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It has also become extremely difficult to evaluate and compare the models
on standard public tasks [223]. This is because the procurement and sources
of the training data make it practically impossible to rule out the possibility
that this evaluation data is not already contained in the training data. This also
relativizes statements such as: “Here’s a list of difficult exams the ChatGPT and
GPT-4 have passed13”. Since it could be proven that this test data is already
present in the training data [2].

Finally, it’s important to address the training data itself, acknowledging that
the process of acquiring and using it is not without criticism. This debate is
currently most pronounced in the area of image generation, where millions of
images from the internet are used to train these models. The problem is, for
example, that these images are used without explicit consent from the creators
and artists. As a result, these models enable the generation of images in a similar
style, which is then labeled as plagiarism by the original creators [139], whereby
such images are sometimes used for fraud [219]. This debate can be transferred
one-to-one to the problematic use and reproduction of works in other modalities
(music, literature, film, etc.), which has already led to many discussions.

The problems mentioned so far extend to the application of AI-based sys-
tems, especially in scientific contexts [211], where scientific findings should ide-
ally be reproducible and comprehensible [162]. The return formats are not always
adhered to, which makes it difficult to work with the results. Prompts that ap-
pear to work for one model may not work properly after it has been updated
or replaced with a newer model. In addition, the best current models (GPT4,
GEMINI) are closed-source and run on external servers. Depending on the type
of data involved, it is not compatible with data protection law to store or process
it on external servers. Alternative open-source models are slowly catching up,
but are not yet truly mature in the area of multimodality (e.g. FALCON [5] or
Alpaca [198]). And often require resources (both personnel and hardware) that
are often not available. Thus, even the use of these models can reach a cost point
that is no longer affordable for most research projects.

The last few paragraphs sounded quite negative about generative AI and the
current LLMs such as GEMINI. We therefore present examples that are only pos-
sible thanks to these systems, as well as applications in which multimodality is an
essential component and will probably soon be a core component of Generative
AI. Some of these examples have nothing to do with language/communication
but are intended to provide a brief overview of where multimodality is still rele-
vant. Systems that prove successful for one application are often transferred to
other areas (see e.g. Transformer [80], originally for translation and now also as
the basis for Computer Vision (e.g. ViT [36]).

Multimodal Assistant: A multimodal assistant is an AI with which you can
not only interact verbally (e.g. Alexa or Siri), but can, for example, also cover
the visual context [122]. Application examples for this would be, for example,

13 https://www.businessinsider.com/list-here-are-the-exams-chatgpt-has-passed-so-
far-2023-1, accessed 13th February 2024.

https://www.businessinsider.com/list-here-are-the-exams-chatgpt-has-passed-so-far-2023-1
https://www.businessinsider.com/list-here-are-the-exams-chatgpt-has-passed-so-far-2023-1
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assistance with cooking, initialized by a picture of the available ingredients [199],
or the creation of personal training plans, supported by a picture of the available
training equipment or other additional information [49]. These are currently the
use cases that are most often presented in tech demos14

Multilingual Communication: As the systems are generally not only multimodal
but also multilingual, they are also suitable for live translations between different
languages. The additional advantage is that the models could translate not only
the spoken language in face-to-face communication but also the corresponding
gestures [12], facial expressions [96] and body movements, which can differ across
diverse cultural contexts and could therefore lead to misunderstandings. One of
the best-known examples is the usage of head movements in different cultures. In
German or US culture, the vertical head movement communicates positivity and
horizontal head movement denotes a negative response. In Bulgarian cultural
tradition this pattern is reversed [9]. It can also be helpful when translating
comics, for example, where images and text often share a common context [29].

Educational Tools: Different people learn best through different modalities (com-
binations) [147,182]. However, knowledge is often only available in one modality
(usually text). Such generative models can be used to generate suitable audio de-
scriptions and explanatory images based on the texts, which can help with under-
standing. Or they can directly help to convey this knowledge in age-appropriate
language.

Healthcare: Multimodal data and systems are particularly valuable in the medi-
cal field. Medical images (e.g. X-rays), conversations (e.g. medical history), and
various signals (e.g. long-term ECG), to name a few, are combined here. And in
the future, intelligent devices such as watches will also be able to track every-
thing. And this is already being done in parts [149,144,210]

Environmental Monitoring: By merging visual, textual, and auditory data, and
leveraging satellite imagery, photographs, and sensor inputs, these AI systems
offer a comprehensive understanding of ecosystems. They can analyze visual data
to track changes in vegetation, assess pollution levels, and identify biodiversity.
Additionally, by processing spoken or written reports from field researchers and
integrating sensor data, these assistants facilitate real-time, context-aware as-
sessments of environmental conditions [62].

Realtime News Feed: In the realm of real-time news delivery, by incorporating
verbal, visual, and potentially other sensory modalities, could AI generate news
on the fly. They can process and interpret not only textual news content but
also images and videos, providing a more comprehensive and contextually rich
understanding of unfolding events. The real-time analysis of multimodal data
ensures that users receive up-to-the-minute updates, making these assistants
indispensable tools for staying abreast of current affairs in a rapidly evolving
media landscape.
14 c.f. https://youtu.be/UIZAiXYceBI, accessed 16th January 2024.

https://youtu.be/UIZAiXYceBI
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Multimodal Programming Assistance: In the realm of coding, multimodal assis-
tants redefine the landscape by offering not just verbal but also visual support,
changing the development process[85]. These AI systems, trained by code snip-
pets, images, and textual descriptions, assist programmers in understanding and
writing code more effectively. Visual cues, such as flowcharts or diagrams, can
supplement traditional text-based explanations, aiding in the comprehension of
complex algorithms and code structures. Accessibility is also improved, e.g. when
complete web pages can be created from simple drawings15.

Mental Health Support: By incorporating multimodal emotion detection, these
assistants can analyze facial expressions, voice tonality, and written text to gauge
the user’s emotional state [144]. This nuanced understanding enables more em-
pathetic and tailored responses, enhancing the overall therapeutic experience.
Visual elements, such as calming images or guided relaxation videos, can be
seamlessly integrated to provide a holistic and personalized approach to men-
tal health assistance. The combination of verbal and visual modalities allows
for a more accurate assessment of the user’s well-being, fostering a supportive
environment for individuals seeking help.

Urban Planning: Generative AI can help urban planning by analyzing textual
documents, satellite imagery, and citizen feedback. It can help city planners
visualize potential changes, understand the impact on communities, and create
more sustainable and livable urban environments.

Content Creation: The influences in the area of content creation have been
noticeable for some time now, and it has never been so easy to create your own
content with AI support without any special prior knowledge. AI can generate art
[138], realistic graphics and videos or audios, sometimes recognized as so-called
deep fakes [222], create entirely new podcasts (https://podcast.ai/) or books
(https://aumgolly.com/). There exist AI-assisted text-to-speech tools, where one
can create a voice with a skim sample of own voice recordings (https://speechify.
com/), and conversely, speech-to-text multi-language transcription tools (https:
//trint.com/ or https://speechtext.ai/).

Assist Scientific Work: In the realm of academia, AI assistance has become
instrumental in refining the intricacies of scientific communication. Non-native
speakers benefit from these tools in crafting more polished manuscripts, ad-
dressing stylistic nuances, and eliminating grammar errors. The systems extend
beyond mere language refinement, aiding researchers in formulating novel re-
search questions when provided with comprehensive background information.
Or even help directly with the preparation or evaluation of studies [184]. In
the peer review process, AI streamlines the time-consuming task of writing and
refining reviews, optimizing style and tone for more efficient and effective com-
munication within the scientific community. However, the scientific community
15 https://youtu.be/outcGtbnMuQ?t=980, accessed 14th February 2024.

https://podcast.ai/
https://aumgolly.com/
https://speechify.com/
https://speechify.com/
https://trint.com/
https://trint.com/
https://speechtext.ai/
https://youtu.be/outcGtbnMuQ?t=980
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itself is still very much debating what constitutes good scientific practice in
times of large language models, including questions of authorship and responsi-
bility/accountability [94,181,180].

3 Current Obstacles

It is anticipated that many challenges currently faced by the systems described
in Section 2 will soon become less significant. These challenges include prompt
engineering [183], contextual constraints [22], consideration of mathematical sub-
tleties [60], and hallucinations [4], among others. We therefore refrain from ex-
amining these challenges, as we consider them to be more technical than funda-
mental. A related review is given by Liu et al. [128].

In the realm of multimodal AI, current efforts focus on integrating various
sensory modalities – such as visual and auditory (including written, spoken, and
sign language), and even olfactory data – to create a comprehensive understand-
ing of the world. So far, however, this has mostly been done by considering small
groups of (2-3) modalities. For example, there are approaches to the foundation
of semantics on modalities such as vision [15], audition [106], or olfaction [105].
Other approaches address the fusion of different modalities, such as text, video,
audio [3], and gestures [118], or fMRI data [1,33]. Advanced multimodal atten-
tion mechanisms [152,126] alongside enhanced multimodal transformer models
[222,218] have the potential to augment and empower AI systems, enabling dy-
namic prioritization of relevant modalities for improved outcomes.

Contemporary Large Language Models (LLMs), which are predominantly
trained on textual data but may also be exposed to images, demonstrate im-
pressive abilities in understanding visual content. For example, ChatGPT can
create an HTML page from a simple hand-drawn sketch, develop training pro-
grams by analyzing images of a home gym, suggest recipes after examining the
contents of a refrigerator, and interpret the humor in a cartoon illustration. How-
ever, many of these functions lack sufficient systematic research and evaluation,
making it challenging to assess their scalability. Despite their limitations, these
examples offer a preview into the future possibilities that the integration of more
modalities could unlock.

In this section, we examine several examples of multimodal analysis that are
likely to be realized in the near future. We discuss this in the context of a number
of use cases from the Visual Communication research group. The examples range
from gesture modeling, to the study of feedback behavior and prosodic features,
to the difficulties of studying sign language. Common to all these examples is
the tension between the extended capabilities of generative AI and thus data-
driven approaches on the one hand, and theory-driven approaches on the other.
The section concludes by systematizing this tension in order to explore a bridge
between data, representation, and theory-based approaches.
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3.1 Manual Gesture

Since an LLM such as ChatGPT [157] is not embodied (in the sense that it lacks
vision for perceiving and extremities for producing body movements), one could
expect that it does not have anything to say about manual gesture. However,
there are plenty of online gesture resources,16 and there is a growing number of
gesture-related scientific publications17, which can potentially be used as part of
a language model’s training data. Accordingly, a language model might yet be
able to handle multimodal data. As an example, consider (1), taken from SaGA
[133], dialogue V11, 2:32.

(1) dann ist das Haus halt so:/then the house is like this:

Intuitively, the speaker outlines the layout of the building talked about. From
the gestural demonstration, one can obtain the information that the shape of
the building is rectangular, like the symbol “⊔”.

What does ChatGPT say to this example? We have to provide a verbal
description of the gesture, however:

In the following scenario, Jane meets someone. The
person says "The house is like this" and simultaneously
gestures as follows: The index finger of the right hand is
stretched, the other fingers are curled; the hand with the
stretched finger is moved away from body, then towards
left, and finally towards the body. Provide a short
answer, as to what kind of gesture this is and what the
gesture can mean in the context of the utterance.

The gesture described is a "demonstrative" or
"illustrative" gesture, used to visually represent or mimic

the shape or form of something. In the context of the
utterance "The house is like this," the gesture likely

represents the shape or layout of the house being
described, indicating its size, orientation, or structure.

Provide a short answer as to what shape the house has.

16 See, for instance, https://paperswithcode.com/search?q_meta=&q_type=&q=
gesture, last accessed 6th February 2024.

17 Such as https://www.gesturestudies.com and the publications and conferences listed
there.

https://paperswithcode.com/search?q_meta=&q_type=&q=gesture
https://paperswithcode.com/search?q_meta=&q_type=&q=gesture
https://www.gesturestudies.com
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Based on the described gesture, the house has a
rectangular or elongated shape.

This is just one example that does not allow any general conclusions to be
drawn;18 more systematic study on LLMs and gestures are needed, as pointed
out by Wicke (2024) [213]. Nonetheless, this example demonstrates that mul-
timodality, as represented by speech and gesture, can already be captured by
unimodal LLMs. We return to this apparent puzzle in Section 3.3 when dealing
with another kind of gesture, namely pointing gestures.

3.2 Making sense of the (bodily) multimodal ensemble

Human communication fundamentally embodies multimodality [163]. Previous
research presents substantial evidence that gesture and speech are connected
[209,208], demonstrating that multimodal signals tend to be temporally aligned
at critical points in time (e.g., [114,111,166] see [167] for a review). From an early
age, we engage with this multimodal ensemble [56], with the interplay between
gestural dynamics and acoustic peaks further motivated by physical impulses of
the respiratory system [167]. Notably, advanced tools now enable the automatic
detection of these significant temporal peaks across various signals, prompting
the question: How can we derive meaning from these discrete moments in time?

A notable instance in speech that generates a peak – in terms of fundamen-
tal frequency and/or intensity – is the prominent syllable (cf. Section 3.5); and
within a syllable, its nucleus (usually a vowel). Even in a long-standing soft-
ware for speech analysis like Praat [26], there exists a script for the automatic
detection of nuclei [41]. Furthermore, for languages with available resources, au-
tomatic speech segmentation at the phoneme level, such as offered by WebMAUS
[107] enables precise segmentation, from which we can easily establish syllable
boundaries.

Having a syllable as a unit of information allows for the identification of
meaningful peaks in the streams of acoustic or kinematic information. However,
it is crucial to make informed decisions about which of these peaks should be
paired together to potentially create a meaningful aligned signal. Kadavá et al.
[102] utilize an 80 ms window to pair acoustic and kinematic peaks, motivated
by mechanical coupling and, more importantly, by

the timing of anticipatory or reactionary muscle movements that occur before
or after a deceleration peak [13] (after [102, 4191]). The layers of acoustic and
kinematic information, along with the procedure used by Kadavá et al. [102],
are illustrated in Figure 1. This pipeline provides tangible proof of our advance-
ment in collaboration between linguistics and computer science, enabling us to
identify units of information (such as syllables) in a computer-assisted manner
and, within those units, automatically find pivotal points that may be carriers
of information.
18 Furthermore, the example was analyzed in [131] and was therefore possibly part of

training data.
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Fig. 1. Representation of amplitude envelope, fundamental frequency (F0), and accel-
eration over time. The diagrams to the right illustrate the methodology for isolating
synchronously occurring peaks within segments demarcated by 80 ms. Identified peaks
include: A for acceleration, B for deceleration, C for F0, and D for amplitude envelope.
The figure is taken from Kadavá et al. [102, 4192].

When working with speech, whether it is formed into single morphemes,
words, or full sentences, we are dealing with meaning. Even when examining
phones, which may not be meaningful on their own, we are dealing with seg-
mentable units based on spectral characteristics. As linguists and speech scien-
tists, we can make informed decisions and use labels and annotations to provide
data that, in turn, can be used to produce automated tools for segmentation and
annotation. The challenge arises when we are faced with vocalizations rather
than speech. How do we segment the units if we do not know whether they
distinguish meaning? How do we segment units whose spectral characteristics
seem to flow into one another (i.e., how do we find a boundary)? To pave the
way toward automation, we first need to establish rules that help us answer such
questions and, based on these rules, label a significant amount of data. In recent
work, [61] proposed a method to label novel vocalizations and test the similarity
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of neighboring segments. In the future, using their paradigm, we could establish
a direct line of investigation and comparison between human and non-human
vocalizations.

By combining efforts between linguists, speech scientists, and computer scien-
tists, we can further establish a link that would allow us to connect prelinguistic
vocal information with kinematic information. If it is crucial for linguistic signals
(e.g., co-speech gestures); why should we not suppose it was crucial before the
dawn of language? We know that primates make great use of gesture, although
there is contradictory evidence about whether apes can expand their gestural
repertoire (e.g., [48,8]). Nevertheless, previous evidence highlights the impor-
tance of multimodality in primates [46], even though it is still rarely studied
[123]. Developing tools to automate the processing of prelinguistic multimodal
signals would enable us to study both human cognition (e.g., through the emer-
gence of communicative systems) and non-human communication. As scientists
studying communication systems, we can strive to provide units of meaning,
which, in turn, can be utilized by computer scientists to build robust models.

3.3 Pointing (Deixis)

“[M]ost linguistic expressions are based on the perception of objects or situa-
tions in the real world” ([206, p. 191], quoted after [204, p. 378]). Such situated
language use is characterized by the use of deictic acts, most prominently point-
ing gestures. Since pointing is bound up with reference, it has – in contrast to
other kinds of manual gestures – received early attention from semantics and the
philosophy of language (e.g., [59]). In fact, deixis is the hinge between the sym-
bolic realm of language and the indexical realm of the perceptible environment
[120]. Accordingly, understanding pointing is an important part of analyzing,
interpreting, and taking part in referential communication – regardless of being
concerned with human–human (HHI), human–computer (HCI), or computer–
computer interaction (CCI).

Successful pointing (deictic behaviour in general) can be construed in terms
of triangulation [40]: if successful, pointing brings about a three-place relation
between a speaker (“pointer”), an addressee, and a common focal object or situa-
tion (the thing pointed at). Therefore, AI technology used to study interactions
involving deixis must be able to identify the pointer, their pointing device, the
addressee, and the object being pointed at. As usual in the domain of language
processing, two perspectives have to be kept apart: analysis and synthesis. The
former is concerned with the understanding of multimodal behavior, the lat-
ter deals with its generation. Within HCI, powerful algorithms for generating
multimodal referring expressions in context have been developed [112,193]. The
underlying rationale is that a referential expression is designed in such a way
that verbal information from speech and locational information from a point-
ing gesture uniquely singles out the intended referent within a set of distractor
items. Understanding multimodal deixis was arguably the first application of
HCI, namely, the “put-that-there” system of Bolt [28], which processed verbal
input and pen strokes on a display. This early system thereby circumvented
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what turned out to be a serious challenge, however, namely identifying the ob-
ject pointed at (the so-called index), in particular if no descriptive aid from
speech is provided [14,113,136,87]. The reason for this processing difficulty is
that a pointing gesture does not directly single out an index; rather, it projects
a pointing cone that directs the attention of the addressee (e.g., [113,43,132]).
Accordingly, processing a pointing gesture and “guessing” its index is a fuzzy
perceptual task, which is influenced by various factors such as the object density
within the pointing domain or the interlocutors’ perspectives [86]. There is no
good reason to assume that AI technology fares better in this respect. But in any
case, AI technology which is to be used for analyzing referential communication,
or want to be able to take part in situated interactions, needs to be “embodied”:
deixis rests on sensory, visual scene processing (understanding) and mastering
a pointing device (such as an index finger; generation). Hence, the successful
use of AI in this kind of multimodal research requires an interplay of speech
processing, visual analysis, and robotics.

However, we want to mention two phenomena that seem to be particularly
involved and (to our knowledge) yet largely ignored by multimodal AI, namely
deferred reference and addressee or discourse pointing.

Deferred reference happens when one points to one thing (the index) and
refers to another one (the referent). For this to work, index and reference have
to stand in a salient relation to each other. As an example, consider (2), where
a painting is pointed at, but the painter is referred to ([38, p. 168]):

(2) This [pointing at a painting ] is my favourite painter.

In (2), the index – the painting – is just given: it has been identified qua
example. However, a more realistic, pointing cone-based scenario is shown in
Figure 2. Here, it cannot be decided by the pointing alone whether the pointer
points at the cup or the egg at s2 – the egg in s3 is out. However, the pointing
gets disambiguated due to affiliated speech:

(3) a. Could you pass me the coffee?

b. Could you pass me this egg?

This resolution works with deferred references, too [132]:

(4) a. I like this type of china.

b. This is a hard-working hen.

(4a) selects the cup, (4b) selects the egg (at s2) as index. Analyzing point-
ing and its metonymic uses therefore requires an interplay of perceptual scene
processing and world knowledge, which, to our knowledge, has not yet been
addressed in computational approaches.

It should be emphasized, however, that world knowledge is not a problem
for AI. Resolving deferred references via descriptions is easily brought about by
ChatGPT (GPT 3.5), as exemplified in the following exchange:
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Fig. 2. The pointing cone “highlights” the cup and the egg at s2 but excludes the egg
at s3 (taken from [132, p. 278]).

In the following scenario, George is pointing at a table
with a cup, an egg, a fork, a knife, a book, a table, a
spoon, a newspaper, and car keys on it. He says: "This is
the best china". Provide a short answer as to which
object George is referring to.

George is likely referring to the cup on the table as
"china" can refer to fine porcelain or ceramic

dinnerware, often used for drinking vessels like cups.

This leads to issues of symbol grounding [81]: How does the LLM “know”
such things without having ever seen a cup or an egg and interacted with these
objects? Very likely, this puzzle of current AI (namely, communicating without
words grounded in direct or indirect experience) is due to “parasitic grounding”
of symbolic cycles of large data within human understanding [83]. Given this
admittedly sparse evidence, AI does seem to be able to process data that results
from human participation in multimodal interactions to a certain level; they are
just lacking a physical, robotic incarnation to perceive and to produce bodily
modalities. Speaking in terms of the Turing test, this boils down to the difference
between purely verbal T2 systems and robotic, sensorimotor T3 systems [82].

We started with a brief overview of what it means to refer and defer by
pointing, and then asked whether current AI produces distinguishable behavior,
modulo the trivial (?) fact of lacking a “body”. This is the perspective of the
Turing test, and not the perspective of AI used as a tool for preprocessing or
annotating multimodal data. Accordingly, we have to distinguish at least three
uses of AI in multimodal research:
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– AI (narrow sense): tool to automatize some task. See other sections for
examples of AI tools for preprocessing and annotating multimodal data.

– Companion: AI for social or information-seeking interaction. This is the
focus of the Turing test.

– Cognitive modeling: AI as reverse engineering models of cognition

The examples above indicate that AI in the second sense, namely as com-
panions, are already useful, albeit still being mainly19 verbal (no T3 systems).

Besides such exophoric uses, pointing gestures are also involved in informa-
tion management in discourse [67]. Consider, for example, (5), which is taken
from the SaGA corpus [133], dialogue V5, starting at 13m58s.

(5) Context: F is recapitulating the route that has just been described to him by
R. Now he is trying to recall the landmark at a certain point of the route
(turn 1). Due to his hesitation (“die (.) die”), R completes the utterance
(turn 2) while discourse pointing at F. The completion was successful since
it got accepted by F (turn 3).

a. F: da steht die (.) die / there is the the

b. R: die SKULptur ((pointing at F)) / the sculpture

c. F: die skulptur drauf / the sculpture on top

R’s pointing gesture in turn b. indicates that the discourse referent F is
looking for in turn a. is already part of the common ground (cf. [90]). Accordingly,
F accepts it in turn c. Thus, understanding the gesture in (5) requires a model
of the ongoing discourse and the facts shared among the participants – on top of
recognizing discourse pointing and detaching it from plain exophoric uses. This
should be too difficult for an LLM, shouldn’t it?

In the following scenario, Paul is recapitulating the route
that has just been described to him by Lisa. Now he is
trying to recall the landmark at a certain point of the
route. He is starting an incomplete utterance: "Then
there is the the ...". Due to his hesitation, Lisa completes
the utterance while pointing at Paul: "... the sculpture".
Provide a short answer as to what kind of gesture this is
and what the gesture can mean in the context of the
utterance.

19 LLMs such as ChatGPT do produce pictorial output.
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The gesture described is a "completion" or "prompting"
gesture, where Lisa assists Paul in recalling information

by providing the missing word or phrase through a
physical cue. In the context of the utterance, it indicates

that Lisa is helping Paul remember the landmark
mentioned earlier in their conversation.

Pretty close, isn’t it? One has to provide some context, of course. And the
context in the above-given example is quite verbose and “semantically loaden”.
Accordingly, the answer might be shaped by collateral associations evoked by
the detailed prelude. And indeed, a shortened context leads to a different, con-
siderably worse exchange:

In the following scenario, Paul is talking to Lisa. Paul:
"Then there is the the ...". Lisa, while pointing at Paul:
"The sculpture". Provide a short answer as to what kind
of gesture this is and what the gesture can mean in the
context of the utterance.

In this scenario, Lisa’s pointing gesture serves as a
"clarification" or "confirmation" gesture, indicating
agreement with or correction of Paul’s statement by

identifying the missing word ("sculpture") in his
utterance.

Of course, Lisa’s turn is a completion, and the gesture does not point at the
missing word. This does not replace systematic gesture probings in LLMs (cf.
[213]), but nonetheless indicates some variance or even boundaries depending on
the elaborateness of prompt context.

To summarize: We have distinguished three uses of AI in multimodal research
(tool, companion, cognitive modeling). From a companion point of view, multi-
modality emphasizes that current AI systems are mainly T2 systems, lacking T3
sensorimotor, robotic capabilities. However, symbolic descriptions of multimodal
interactions enable AI to process even the data resulting from such interactions
in a meaningful, interpretable way. This suggests the conclusion that the main
challenges of perceptual fuzziness of pointing gestures (which makes it difficult
to identify indices in the first place), deferred reference and discourse pointing
for AI systems (the multimodal computing gap) rest in sensorimotor, robotic
engineering. This seems to be the avenue that AI technology needs to go down
to engage physically in deictic behavior.

3.4 Multimodal Ensembles and Gestalts

Speech processing and turn-taking is a tightly coupled system [121]. Adding tem-
porally offset, multimodal signals should increase the massiveness of the binding
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hat rote nein blaue
[Notfalltreppen]

gleiche Farbe wie diese
[Notfalltreppen]

das ist [ein großer
grauer Bogen]

wo [der große
Bogeneingang] kommt

die Skulptur die hat’n
[Betonsockel]

rote Röhren auf’m
[Sockel]



Repetition of
speech and ges-
ture

Repetition of
gesture, modifi-
cation of speech

Modification of
both speech and
gesture

Gestures and
their affiliates
may become
coupled into
multimodal
ensembles.

Fig. 3. Routinization of speech–gesture ensembles by repetition [135,143] (figure is
taken from the presentation slides).

problem [97,57] and impact this system to the effect that multimodal interaction
is much more difficult to process than unimodal communication [91]. But the
opposite is the case. One reason for explaining this paradox is that multimodal
discourse gives rise to channel-crossing, higher-order processing. Basically, (fea-
tures of) signals from one channel can inform the interpretation of signals on
other channels. This has been observed in terms of the unity of speech–gesture
pairs, or composite utterances, which cohere into a channel-crossing ensemble
[103] (cf. the notion of idea unit [141]). Empirical evidence was found in the rou-
tinization of recurrent speech–gesture ensembles [143,135] – see Figure 3 for some
examples. On repetition, speech–gesture unity allows for a simplification of the
form of the components of an ensemble. A generalisation to multimodal “local
gestalts” (early work on multimodal ensembles focused on speech and co-verbal
gesture), but without recurrence, has been argued for by [146], leading to a no-
tion of recurrent multimodal gestalts [91]. In recent work, ensembles have been
construed within interactionally embedded gestalt perception for rapid process-
ing of multimodal signals [203]. An illustration of a multimodal gestalt is given
in Figure 4, simplifying the model of [203] somewhat. The utterance-level inter-
pretation of the speech signal is shaped by both, bottom-up multimodal signal
features and top-down gestalt perception. Multimodal signal features and mul-
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eye brows:

eyes:

speech:

shoulders:

hands:

time

“What can I do?”

#»u #»v #»w #»z

Fig. 4. Shrugging as whole body behavior (Wikimedia Foundation, Inc. Original up-
loader was Cbarr (WMF), CC BY-SA 3.0, File:RobGrindes-shrug-143px.png). The
dashed, gray area indicates a multimodal gestalt.

timodal gestalts inform the interpretation of future multimodal utterances (as
captured, for instance, in probabilistic frameworks such as predictive processing
[89]; but see [125] for some critical discussion).

From the perspective of processing, the challenge of multimodality is that the
immediacy assumption [75] holds for multimodal interaction, too (of course!).
Processing happens not only bottom-up (the traditional perspective of linguistic
grammars and parsing), but also top-down, and involves an immediate inte-
gration of processes as diverse as facial recognition [155], emotional tracking
[68], perceptual classification [131], social cognition [150], and verbal utterance
interpretation (e.g., [72,66]). It remains to be seen whether the multimodal seri-
alization hypothesis is sustainable, namely that multimodal language processing
is driven by “vertical relevance” which supervenes on sequential relevance [134].

3.5 Temporal, Kinematic and Pragmatic Integration of Gesture
and Prosody

David McNeill, a pioneering scholar in the field of gesture studies, claimed that
speech-accompanying gestures, also called “co-speech gestures” (a) are closely
temporally coordinated with speech (the phonological synchrony rule); and that
(b) work together with speech to convey the same pragmatic meaning (the prag-
matic synchrony rule [141]). See Figure 5 for an example of temporal coordina-
tion of gesture and prosody, based on [55].

In this sense, the combination of verbal, prosodic, and gestural strategies to
convey meaning [164] can be described as a “multimodal ensemble” (see Sec-
tion 3.4) in communication. In the last decades, research has shown clear evi-
dence of a close temporal coordination between prosodic structure (e.g., promi-
nence and phrasing patterns) and the organization of gestural movements. How-
ever, less is known about the kinematic coordination between gesture and prosody
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Fig. 5. Graph showing a pointing gesture in its temporal phases (top), time aligned
with sound wave and F0 contour (middle) and text annotation (bottom). Adapted from
[55].

(e.g., [6]) and the interaction between the two in the marking of pragmatic mean-
ing [172,32]. Following these lines of research, as multimodal language researchers
we are interested in assessing three complementary aspects of the relationship
between prosody and gesture, specifically their temporal, kinematic, and prag-
matic integration.

To do this, multimodal language researchers have typically relied on human
annotation. Regarding prosody, the challenge in prosodic annotation lies in trans-
lating a continuous speech signal into discrete linguistic entities, such as the as-
sumed categorical elements of intonational phonology [116]. In the realm of into-
national phonology theory, models for prosodic categories have been proposed, of
which the most widely adopted systems are based on the autosegmental-metrical
approach to intonation (Tone and Break Indices, [20]). Human transcription of
speech is a time-consuming task, and inter-annotator agreement is, at best, mod-
erate (e.g., [74,197]). Consequently, several attempts have been made to automat-
ically classify or transcribe prosodic categories (e.g., [214,159,188,187,174,175] for
an overview). See Figure 6 for an example on pitch accent categories of GToBI
training materials, cf. [73]. However, automatic approaches proposed so far have
a common limitation – while they can reliably classify coarse prosodic cate-
gories, i.e. two classes of pitch accents, classifying more fine-grained pitch accent
categories or differences in prominence levels fails to yield reliable results (e.g.,
[30,174,188]). Moreover, to our knowledge, no standard annotation proposal has
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Fig. 6. Sound wave (top), F0-contour (middle), and text and prosodic annotation (bot-
tom) for a German sentence (translating to “We want bananas, melons and raspber-
ries”), with annotated GToBI pitch accent categories L+H* and H*.

been made up until now for the labeling of prosodic meaning. One consequence
of those weaknesses in manual and automatic classification is the lack of ap-
propriate large-scale and automatically annotated databases and resources for
prosody research.

Regarding gestural data, annotations have mainly been done manually by
human annotators, with the use of different software and annotation schemes
(see [71] for an overview). However, a few tools such as motion-tracking suits
or post-processing applications (e.g., OpenPose [35], MediaPipe [137], etc.) can
track bodily movements automatically, allowing researchers to process the gestu-
ral kinematic signals into measuring aspects such as gesture trajectories, ampli-
tude, or velocity. In combination with manual annotations, these tracking tools
are able to identify gestures (see [95]). While these tools are already able to ac-
celerate the manual annotation processes and can fairly easily be incorporated
into AI, their approach to the semantic or pragmatic dimensions of gesture is
limited. Similar to prosody, the interpretation of gestural behavior is key in order
to assess decisions such as referential gesture types or pragmatic functions. These
classifications are primarily applied manually (through annotation systems such
as M3D [173], LASG [31] or CorpAGEst [27]). For instance in the M3D system,
the meaning dimension allows the classification of gesture referentiality as well
as pragmatic domains like speech acts, stance-taking, or discourse organization
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(e.g., information structural marking). Some of the manual annotation systems
reach acceptable to good inter-annotator reliability (cf. [172]). Such categorical
classifications could provide a challenge for their implementation into processing
models for the following reasons: (a) they are sometimes based on subjective
interpretations, which can diverge even between experts, and (b) most of these
linguistic function-based decisions require a communication-related context to be
made reasonably. Thus, while the processing of kinematic signals is on a good
path to be a facilitation in gestural research, assessing the discourse-structural
and meaning contribution of prosody and gesture will likely remain an anno-
tation challenge for AI tools in the near future. One of the reasons for this is
that machine learning requires a large amount of manually annotated data for
accurate training, yet this data is not expected to be generated in the required
breadth and depth. Given the role of AI as a companion tool (see Section 3.3),
one might expect new ways of automatically generating appropriate annotations;
however, prosodic information presents particular challenges in this regard.

Given the similarities that can be found between prosody and gesture, both
in the temporal and the pragmatic domains, automatic classification of multi-
modal events may pose a similar obstacle to building large-scale corpora. An
important issue for both temporal coordination and pragmatic coordination of
prosody and gesture is the synchronization of the acoustic and visual channels
to provide accurate assessments of the data. When possible, data synchroniza-
tion should be considered in advance, by using an appropriate technological
recording setup, but it can also be done in post-processing. While temporal syn-
chronization might be covered by AI tools soon, semantic integration of speech
and gesture will most likely be a bigger challenge. With prosody-gesture research
being a relatively young field in linguistics, major theoretical developments reg-
ularly occur, which poses another challenge for up-to-date training of AI tools.
Therefore, communication researchers need to be in accordance and very specific
about their classification criteria in order to be able to train annotation algo-
rithms. This can pose a challenge to linguists due to perceptual subjectivity in
linguistic interpretation.

With innovative AI technology, there is hope to increase classification ac-
curacy in the domains of prosody-gesture research. A more precise mapping
between theoretically motivated form-based categories (in prosody and gesture)
and the continuous speech signal could be achieved in the future. However, espe-
cially the functional mapping of prosodic and gestural categories to the acoustic
and visual signal might continue to be a challenge for AI in communication
research, given that linguistic context and expertise are required to reach this
mapping.

3.6 Multimodal feedback in interaction

We have a relatively good understanding of the linguistic structures used for
anticipating and resolving trouble [177][19][63], but most of this research was
based on observations, written or audio language, narrations and elicitations.
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Only recent analyses have drawn attention to the importance of using natural-
istic conversational data for this research [44]. The role and the usage of the
multimodal cues as a part of trouble management resource the interlocutors
employ in face-to-face interactions is largely under-researched and we have no
understanding of which and how multimodal cues are combined with vocal and
manual (non-)lexical signals in everyday conversation. Apart from that, very lit-
tle is known about the strategies used for trouble management in sign languages.
Understanding the role of the various cues in the trouble management resources
in face-to-face interaction in signed and spoken languages has important impli-
cations for the conception of successful communication.

We define feedback as an interactional behavior that displays interlocutors’
perception or understanding of the course of the conversation.

A central topic of multimodal modeling concerns the variability in non-verbal
and non-manual conversational units and how they help shape human commu-
nication. One large source of variability exists in facial and head movement
to signal feedback in face-to-face interaction. Movements seem to have specific
meanings, but no clear picture exists about these mappings and how variable
they are. The goal of research in this area is to understand how the various fa-
cial and head movements are linked to feedback functions to better understand
conversational phenomena, such as turn-taking, feedback, and trouble manage-
ment. This topic is multimodal, as it involves the use of visual (manual signs,
gestures and non-manual cues, e.g. facial expressions, eyebrow, head, torso or
shoulder movements) and vocal signals (such as lexical items and non-lexical
vocalizations). To study feedback we use the available online corpora and col-
lect naturalistic data in a variety of spoken and signed languages: German Sign
Language (DGS)[109], Russian Sign Language (RSL) [17] and Ukranian Sign
Language [18], spoken Russian [17], spoken German or spoken Polish [115]. For
the transcription of the spoken language data, we try to use automatic speech
recognition (ASR) but we encounter various challenges, recently documented by
Liesenfeld and colleagues [124], such as the deletion of hesitations and non-lexical
vocalizations like laughter (see also [71]). Languages other than English already
pose a challenge for many ASR systems. While English seems to contain the low-
est error rate, languages like Polish, German and Russian, perform significantly
poorer when using most speech-to-text systems.

Applying ASR to natural interaction poses a much bigger challenge. Human
interaction typically features a rapid back-and-forth between participants, with
a normal distribution of turn transition times centered around 0–200 ms [121],
with many turns occurring in slight overlap. Tested ASR systems record sub-
stantially fewer speaker transitions and no overlapping annotations, and they
lose linguistically relevant chunks of language [124] (see above).

We use annotation software ELAN [216] to manually annotate further feed-
back signals (e.g., head movement, eyebrow-raising, mouth movement, torso ori-
entation, shoulder shrugging, and other movements). Then machine learning is
used to determine which multimodal cues are used in overlap and which are not.
This involves investigating how facial movements are used in different languages,
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and how they are used in sign languages compared to spoken languages. Data are
manually annotated for about 70 different categories of facial movements using
ELAN. These include, for example: “head tilt to the left”, “eyebrows raised”, or
“nose wrinkled”.

The annotation team has incrementally developed a set of annotation guide-
lines. The annotations are double-checked by deaf and hearing researchers. At
each time step, the annotator defines whether there is a feedback element, which
features are moving, and a start and end boundary. In this way, the data is seg-
mented from a continuous stream of video data into a discrete list of multimodal
feedback cues. Timestamps are used to keep the data aligned with the video
data. The timestamps also allow the duration of the feedback to be measured,
as well as linking to potentially relevant pre- and post-feedback items. Annota-
tion relies on many human judgments. It is important to note that the process
is incremental, as it is not easy to define all the criteria and rules in advance.

The project under consideration is naturally divided into an annotation part
and a statistical modeling part. For the annotation part, formal modeling is
used to represent the criteria and logic for annotation and extraction. Whether
or not this annotation process can be fully and formally modeled is still an open
question. The project has not yet aimed to do so, and it is an open question
whether this is possible. Parts of the annotation process are formally modeled
using the annotation guidelines mentioned above. These are verbal descriptions
that are formal because they are written down in a precise way. The annotations
are extracted using a script that contains rules about which features to extract,
which features to combine, and when certain features belong together. These
rules are kept very simple and do not depend much on the context. For the data
analysis part, several standard statistical and machine learning models are used
to analyze the resulting data set. The main goal is to find out which features are
clustered together to signal feedback in interaction and whether these features
are similar between signed and spoken languages under investigation. The fea-
tures ideally reflect a faithful representation of what is important for successful
communication. The challenges of this problem are related to typical analysis
decisions, such as sample size, data preprocessing, feature selection, and model
comparison. Other decisions, e.g. in clustering analyses, are related to distance
and linkage methods. Overall, these modeling techniques are very standard and
well-understood: these are statistical models and therefore do not have an un-
derstanding of the nuances of the data that only humans can understand.

The question then is which of the modeling steps described so far can or
cannot be automated. Both the annotation and statistical modeling steps can
benefit to some extent from NLP / ML tools. The annotation part could benefit
the most from automation. This process is currently very time-consuming and
expensive with a tendency towards low inter-annotator agreement [151] since
it relies heavily on human judgment. Computer vision tools such as MediaPipe
can be used to automatically extract initial sets of relevant features. MediaPipe
provides several tools for facial feature extraction, and it is possible to train new
models for new features. For example, MediaPipe predicts 52 facial “blendshape”
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scores, which are movements such as “brow down left”, “cheek squint left”, “mouth
roll down”, and so on. These scores largely overlap with the features that are
currently coded manually. OpenFace generally detects more details than Medi-
aPipe. For example, OpenFace recognizes facial action units according to the
Facial Action Coding System.20 However, not all non-manual movements are
likely to be currently detected in the video data by a Computer Vision tool.
In a study by Paggio and colleagues [160], head movement recognition software
trained on spoken language conversational video data annotated frame-wise with
visual and acoustic features was found to predict head movement only with 0.75%
accuracy. Especially subtle head nods signalling feedback are likely to be missed
in the data. As the automatic recognition of non-manual elements (especially
head movements) in video-recorded face-to-face dyadic conversations does not
seem to be accurate and reliable enough at the current stage, a number of recent
studies pursue a combined method: manual annotation in the video-recorded
data and partly automatized extraction of particular measurements with a CV
tool. A reliably working combination of such methods is, however, needed to
carry out systematic, data-driven research in multimodal, signed and spoken
language use. It seems possible to train ML models for this as well. Improved,
specialized tools would mitigate at least some of the manual workload, enabling
to process a larger amount of data.

Going from a set of features to a set of feedback labels is a more unde-
fined problem so far. Typical feedback categories discussed in the literature are
e.g., continuer, newsmarker, assessment, open request, acknowledgment. Many
of these concepts are based on spoken language, which might look differently
in sign language and other language settings such as in online communication.
Therefore, the project is currently set up to postpone the use of any of these
labels prior to the analysis of multimodal behaviour. Data analysis such as clus-
tering is used to determine whether it makes sense to distinguish concepts such
as that of a “continuer”.

The approach just outlined uses statistics and ML methods such as k-nn
clustering. The idea is to explore the mapping between these labels and the fea-
tures in an unsupervised way. Multimodal LLMs could be useful to automate
this process. Existing LLMs are not yet able to handle multimodal data. How-
ever, multimodal LLMs are under development (see above). The goals of such
multimodal LLMs are not necessarily the same as what we or other cognitive
scientists are interested in, but it is possible to reuse models and learn from them
in both ways.

Ideally, one would like to find out what categories of feedback can be pro-
duced by movements of the face, head or torso. This requires a high level of
understanding of a conversation. It is not clear that this is fully possible with
automation tools such as LLMs. In this sense, it seems to be a limit for the appli-
cation of current generative AI systems to learn how to process a conversational
context to detect, qualify, and ultimately “understand” human behavior such as
facial or head movements. We see this as an ongoing challenge for AI.

20 https://en.wikipedia.org/wiki/Facial_Action_Coding_System

https://en.wikipedia.org/wiki/Facial_Action_Coding_System
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3.7 Dyadic Social Behavior – Basic Research and Clinical
Applications

Investigating dyadic social behavior is a vital aspect of visual communication
research, underscoring the intricate interconnectedness inherent in interpersonal
interactions. This area of research also holds significant implications for address-
ing psychiatric and neurodevelopmental conditions often associated with chal-
lenges in interpersonal reactivity, such as Autism Spectrum Disorder (ASD)[165].
In this context, multimodality refers, on the one hand, to different techniques for
recording social-communicative behavior such as facial and body movement anal-
ysis, physiological response monitoring, neuroimaging, and eye tracking, with
video recordings, specialized lab equipment, or wearable devices [156,186]. On
the other hand, the notion of multimodality can be extended to the integra-
tion of several “semantic” layers of social interaction, including emotions, atten-
tion, conversational themes, social settings, and cultural contexts. Such “higher-
level modalities” manifest throughout a variety of channels, including physiol-
ogy, voice, face, body posture, and gaze patterns. Typically, they can not be
accurately interpreted from a single type of raw data but can be conceived as
coherent ensembles of multimodal signals that together convey social and emo-
tional meaning [84]. These may entail easily discernible events such as a “smile”, a
“gaze towards an object”, or a “pointing gesture”, but also specific, more complex
sequences of such events.

In clinical contexts, another layer of complexity emerges: part of psychiatric
diagnosis involves using multimodal aspects of behavior to characterize individ-
uals in relation to“typical” social functioning norms, with “atypical” behavior
across various contexts regarded as “symptoms” indicative of a clinical condi-
tion [217,7]. Autism Spectrum Disorder (ASD) serves as a prime example of
this diagnostic approach: Direct observation of social behavior via standardized
tools is crucial for diagnosis. Specialized instruments (e.g. Autism Diagnostic
Observation Schedule, ADOS) [130] have been developed to encapsulate both
the subjective clinical impression and quantifiable aspects of autism-related be-
havioral patterns [185]. This method underscores the essential role of multimodal
observation in identifying and understanding the nuanced spectrum of ASD.

Data Collection and Processing Techniques: Recent technical developments
allow to employ advanced multimodal data collection methods. These include
using tools like MediaPipe and OpenPose for detailed body pose and facial con-
figuration analysis, mobile eye-tracking glasses, microphones for verbal commu-
nication capture, wristbands for physiological monitoring, and portable neu-
roimaging devices. Manual annotation and evaluation by human experts plays a
crucial role in categorizing communicative behaviors, especially for higher order
multimodal social-communicative states (e.g. joint attention, emotional/ com-
municative states etc.) and clinical symptomatology [84,185]. Processing this
data involves building on available tools and processing pipelines that use already
available and established ML/AI methods [140]: analyzing facial expressions and
categorizing basic emotion types and “action units” (according to Ekman and
Friesen [52]) and intensity (based on video or single images), analyzing body
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poses for detection of body and head gestures, and creating 3D skeletal mod-
els, and processing eye tracking data for saccades, fixations, and matching to
a respective world video. Transcription of speech can be greatly sped up with
the help of automatic tools and allows for sophisticated annotation and analy-
sis of conversational elements, emotional tone, and specific linguistic properties
[108,176].

Solvable Challenges and Immediate Future Directions in Multimodal Data
Modeling: With available tools, it is well possible today to model data channels
separately with high sophistication, using modality-specific pipelines. For such
single-modality analyses (e.g. gesture detection, facial expression categorization,
gaze mapping, and speech processing) automated pipelines will likely continue
to evolve and will be able to capture more and more subtle nuances in the near
future. For example, refinements and improvements are possible by integrating
temporal dynamics into gesture and facial expression models and increasing the
range of classified behavioral elements (e.g. types of gestures, types of facial emo-
tions; [171,39]). For several challenges, there are no ready-to-use tools available,
yet, but these will likely be available in the near future. These include fusing
multiple video recordings into a full detailed 3D representation of the whole
scenery, and simultaneous tracking of body configurations of multiple persons
with just a limited number of video cameras [93] and/or sparse arrays of body
sensors, or mapping eye gaze data onto a scenery in 3D gaze coordinates [79].
Thus, in principle, currently available uni-modal ML/AI methods and analyses
and their future refinements might be sufficient to solve many problems related
to the classification of modality-specific interactional entities with high precision
(e.g. gesture classification based on pose data, or expressed emotion based on
facial video data). However, vast amount of (annotated) data will be needed and
may exceed what is feasible to produce in academic research.

Automation and Future Aspirations in Multimodal Research: Complex multi-
modal integration is currently neglected, but is pivotal to fully grasp the semantic
meaning of social situations: For example, in a conversation between two indi-
viduals, if one person nods slightly while listening, this gesture can typically
be interpreted as an acknowledgment or a sign of agreement, encouraging the
speaker to continue. However, this nod, when paired with a brief, yet pointed,
glance towards a wristwatch before returning to the speaker, transforms the mes-
sage entirely. It would then be more appropriate for the speaker to recognize this
as a subtle sign of impatience and a reminder of time constraints, and to stop
talking instead of continuing. The core issue here is the necessity of integrating
“world-knowledge” and attributing mental states to individuals for accurate in-
terpretation of the situation. A single-modality cue, like a brief nod, can convey
vastly different messages depending on context. Noticing the additional glance at
an object, such as a watch, only clarifies meaning when combined with an under-
standing of internal states (e.g., impatience), social conventions (e.g., politeness),
and the object’s significance (a watch indicating time). Thus, the combination
of multi-modal ambiguous cues and the breadth of contextual aspects may ex-
ponentially increase the range of possible interpretations. As a consequence, the
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endeavor to automate the analysis of social behavior for discerning nuanced
meanings or identifying clinical symptoms could be reframed as striving toward
the creation of a highly capable perceptual agent with a nuanced internal world
model. This agent would need to possess advanced, universal capabilities for nav-
igating social and communicative scenarios, equipped with perceptual precision
and intuition comparable to humans. The question of whether this is actually
theoretically possible or even desirable is beyond the scope here, similar to the
discussion around Artificial General Intelligence (AGI) as a general solution for
automating complex cognitive tasks.

A more feasible and realistic approach might be to develop generative multi-
modal models that are able to simulate human behavior for specific interactive
scenarios, similar to how GPT-based LLMs mimic human linguistic output. The
burgeoning field of virtual and augmented reality (VR/AR), particularly within
platforms like the “Metaverse”, may present a future opportunity to capture
and analyze nuanced recordings of dyadic interactions on a massive scale. Such
datasets could be analyzed with similar methodologies as used in large language
models (LLMs) that create powerful generative models from large text corpora.
As in the case of advanced models like GPT-4, given enough data in combina-
tion with further human reinforcement-learning based refinement, surprisingly
capable models could potentially emerge.

The key to this approach would be not to operate on the “raw data” signals
but to distill a lexicon of “tokens” or behavioral “subwords” that represent the
smallest units of meaningful interaction. For instance, consider the nuanced in-
terplay of gestures and expressions in a social interaction: a nod accompanied
by a smile, further contextualized by direct eye contact, could be identified as
the basic behavioral tokens. These tokens, when observed in a sequence, such
as a smile followed by a nod, and then sustained eye contact, might collectively
signify an “acknowledgment” or convey “friendliness”. The temporal configura-
tion of these tokens, their order, and duration, may convey further subtleties
of the interaction: For example, a quick nod with a fleeting smile might denote
a polite, yet perfunctory acknowledgment typical among acquaintances. In con-
trast, a prolonged smile combined with a nod and extended eye contact could
be interpreted as a warm, genuine greeting, indicative of a deeper rapport be-
tween friends. Employing a granular, token-based strategy as a mediator between
raw data and nuanced social interpretation offers numerous benefits: it simpli-
fies complexity by decomposing interactions into fundamental units, enhances
processing efficiency and reduces data requirements, broadens model applicabil-
ity across varied scenarios, supports gradual learning, and increases the model’s
interpretability. This perspective of a stratified bottom-up methodology, empha-
sizes the need for a nuanced understanding of the semantic and social building
blocks of behavior. Identifying these “tokens” or “subwords” is not just about
capturing gestures or expressions but understanding their significance within a
rich tapestry of human interaction. This approach could unlock new perspectives
in social behavior research and clinical diagnostics, offering a granular view of
interpersonal dynamics without the constraints of formal pre-defined theoretical



28 A. Henlein et al.

models. At the same time, this strategy allows for the thoughtful integration of
established theoretical concepts by defining appropriate tokens. By adopting a
layered modeling strategy, the analysis remains data-driven yet can be enhanced
and guided by pertinent theories from psychology, linguistics, and medicine.

The current state of the field seems to be optimally suited for such an ap-
proach: With the increasing availability of high-precision modality-specific analy-
sis pipelines, the intermediate “tokens” could be assessed automatically, and their
multimodal integration could then further be analyzed on this more abstract,
semantically meaningful level. Ensembles of these tokens, their time course, and
their complexities could be further stacked in increasing layers of abstraction, i.e.
from basic building blocks of interaction, to transient states of communication,
up to categorizations such as typical and atypical behavior and diagnostic symp-
toms [185]. However, the ambition to automate the analysis of complex social
behaviors for diagnostics in clinical settings should only be pursued with cau-
tion. The intricate variability of human behavior, shaped by diverse psychological
and neurodevelopmental backgrounds, may not be fully captured. Furthermore,
there are critical ethical concerns with respect to potential oversimplification,
privacy issues and individual rights in medical care settings. Despite these chal-
lenges, the potential of automated analyses to augment clinical decision-making
remains compelling. By providing a detailed and quantitatively rich portrait of
behavior, AI-supported tools could offer clinicians a deeper understanding of
patients’ behavior and symptoms, enhancing diagnostic precision and personal-
ized care strategies. However, the deployment of these technologies demands a
careful balance, ensuring they serve as adjuncts to, rather than replacements for,
the nuanced judgment of healthcare professionals. Respecting the ethical bound-
aries and the multifaceted nature of human behavior is crucial in realizing the
benefits of AI in clinical applications, advancing patient care while safeguarding
individual dignity and privacy.

3.8 Diagrams and LLMs

Diagrams represent a distinct research area within communication studies, yet
they share overlaps and similarities with many other fields. While LLMs are
now making remarkable progress in recognizing images and classifying objects
within them, they often struggle to distinguish diagrams from other pictures.
This challenge is not surprising, given that humans also encounter difficulties in
this area. In most cultures, there is a similar intuitive understanding of what
constitutes a diagram and how it differs from a picture. However, in research,
there lacks a precise criterion for identifying diagrams as such and distinguishing
them from language or other forms of representation [10,21].

The absence of a standardized criterion for diagrams is partly because dia-
grams can be utilized in various ways, and their design function seems almost
limitless. For instance, while the traditional diagram is visual, there have been
uses of ‘audio diagrams’ since the 19th century [53], and the 20th and 21st
centuries saw the invention of various ‘haptic diagrams’ [69,154]. These can be
objects that are both tangible and visible or visual diagrams that have been
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Fig. 7. Children pointing to a specific area of a diagram

translated into Braille [201]. From the Middle Ages to early modern times, di-
agrams were also expressed through gestures [170]. For example, many children
learn from an early kindergarten age to communicate diagrams by assembling
different objects, indicating the medium for conveying a diagram can be highly
versatile [70] (see Figure 7).

Focusing on visual diagrams can be utilized either unimodally or multi-
modally, depending on the requirements. Visual programming language (VPL)
in human-machine interaction, for instance, aims to be as unimodal, iconic, and
rule-based as possible, yet intuitive 21. In contrast, diagrams in human-human
interaction, such as in mathematics education [205], are typically multimodal,
iconic, spontaneous, and intuitive. Nonetheless, most diagrams are multimodal in
that they are often accompanied by words, facial expressions, pointing gestures
and gestures in general from the person drawing the diagram in a communica-
tive situation. These situations form a kind of ‘multimodal ensemble’ (see Sec-
tion 3.4) which frequently consists of words, facial expressions, gestures, and the
diagram itself. When the communication situation is set aside, most diagrams are
multimodal in that they incorporate heterogeneous elements, including geomet-
ric elements like lines, circles, parallelograms, etc., arranged spatially, alongside
words or symbols. While the geometric elements are usually perceived as inher-
ently diagrammatic, the words or symbols are often seen as non-diagrammatic.
Hence, most diagrams that feature this multimodal ensemble are described as
‘heterogeneous diagrams’ [16].

Currently, diagrams are viewed from three perspectives [145]: (1) the ‘suspi-
cious view’, which regards diagrams at best as heuristic tools; (2) a ‘practical
view’, recognizing diagrams as capable of representing information or solving
problems in specific contexts; and (3) a ‘formal view’, which considers diagrams
as a formal language. The feasibility of the latter perspective was first demon-
strated in the 1990s by distinguishing the syntax and semantics of diagrams,
enabling metamathematical proofs concerning diagrams [191]. This significant
advancement achieved by a philosopher was subsequently applied to mathemat-
ics and artificial intelligence [65,98]. Presently, psychology and cognitive research
21 Seehttps://snap.berkeley.edu/project?username=ten_6044&projectname=Match%

21.

https://snap.berkeley.edu/project?username=ten_6044&projectname=Match%21
https://snap.berkeley.edu/project?username=ten_6044&projectname=Match%21
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Fig. 8. GPT 4.0 (February 2024) not only fail to recognize the diagram created by the
hoops but also mistakes the position of the marbles in the picture.

are particularly focused on exploring how the intuitive advantages of diagrams
(e.g., free rides, observational advantages, etc.) [189,190,194] can be merged with
formal diagram languages [24,25,78,92], while also addressing the long-recognized
disadvantages of diagrams, such as ambiguity or uncertainty issues [64,100].

Diagrams have been utilized in artificial intelligence for years in a variety
of ways. They are frequently used in the development of artificial intelligence
[153], in the field of explainable AI, in the solution of certain problems and as
a medium for certain applications. LLMs can be used either to obtain written
information via diagrams, to analyze diagrams or to generate diagrams. The
difficulty currently lies in recognizing a diagram as such and distinguishing it
from an ordinary image. Language AIs are perfectly capable of doing this thanks
to image recognition and different outputs. However, most LLMs already fail to
recognize a diagram in a picture in which, for example, children use a diagram
consisting of two partially overlapping hoops to classify marbles according to
color (see Figure 8).

If we stick with this example, the next step after the identification of a
diagram would be to correctly classify it. However, further problems arise here,
which are due to the insufficient research on diagrams to date. The majority
of diagram use takes place outside of academic research, namely in professions
such as graphic designers, information designers, communication designers, etc.
Numerous guides, books and, above all, websites have emerged from the practical
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Fig. 9. Screenshot taken from GPT 4.0 in February 2024, which has now resorted to
Dall-E for the same prompt as Figure 10(left screenshot).

environment of these industries, which present lists with examples of the different
types of diagrams.22

However, these lists are not standardized and differ concerning the names of
diagram types or the classification of diagrams under one type. However, there
already exist approaches to creating metataxonomies [54]. As there was almost
no diagram research at all between around 1880 and 1990 with the onset of the so-
called ‘crisis in intuition’ [76,101], LLMs can neither draw on a broad data set nor
on a uniform classification. Even if there is already a great deal of research on the
above example of the two hoops or circles, the definition is still not clear. This is
because the unimodal or multimodal context also plays a role in diagrams. These
contexts must respond to which diagrams a corresponding diagram is associated
with, or which words, gestures etc. a diagram is associated with in context. The
two partially overlapping hoops or circles can be interpreted as a set diagram, an
Euler diagram, a Venn diagram or something else [58]. It is the context that is
crucial here, and the amount of information about these contexts that an LLM
can access. Diagrams may be intuitive to humans at first glance, but the closer
they are examined, the more difficulties they reveal that machines cannot solve.

22 See e.g. https://flowingdata.com/chart-types/, https://datavizcatalogue.com/,
https://datavizproject.com/

https://flowingdata.com/chart-types/
https://datavizcatalogue.com/
https://datavizproject.com/
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Fig. 10. The left screenshot is from GPT 3.5 from Spring 2023. The prompt asked for
generating a Venn diagram including dogs and mammals as an example. The result
was the Euler-type diagram shown. GPT 4.0 (without plugins) also delivers a similar
result in February 2024. However, in 4.0 the containment relation is better represented
by nested squares in ASCII.
The right screenshot is taken from GPT 3.5 in spring 2023, which issued the tikz code
for the same prompt as mentioned in the left one.

If images with such geometric shapes are analyzed in LLMs without further
information, the programs not only fail to differentiate between picture and
diagram, but also fail to recognize the type of diagram correctly or hallucinate.
These are some of the problems with diagram recognition that need to be resolved
in the future.

However, LLMs do not yet perform well in the generation and creation of
diagrams either. Image-generating AIs such as Midjourney or Dall-E can create
countless diagram types, but these often do not correspond syntactically to the
conventions or rules and are usually semantically meaningless (see Figure 9).
Language-based AIs such as ChatGPT can now access these image generations,
but then hallucinate results that do not correspond to the logical principles of the
respective diagrams. Instead of a Venn diagram, for example, GPT generates an
Euler diagram. LLMs work better, for example, when they generate diagrams
in ASCII code or in tikZ (see the right screenshot in Figure 10), HTML (see
the left screenshot in Figure 10) etc. Simple Euler or Venn diagrams are often
syntactically correct, even if there can be confusion between the diagram types
in the explanation given by the LLM.

Diagrammatic theorem provers or programmes in the field of visual comput-
ing work much more successfully than language-based AIs. However, if these are
not themselves based on AI, but on sound and complete algorithms, they can
already be successfully integrated into LLMs as plugins (see Figure 11). The re-
sults for certain tasks are correct if the right plugins are selected. A lot therefore
depends on the prompt, the respective architecture and the choice of plugin.
This in turn determines the explanation of the produced diagram also provided
by the respective LLM.
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Fig. 11. Screenshot taken from GPT 4.0 in February 2024, which successfully com-
pleted a task using a Venn Diagram. The Wolfram Alpha plugin was utilized to assist.

It is therefore important for diagram recognition and diagram creation that
manually set up databases in the relevant specialist areas to classify the diagram
types correctly. A model for such research is Leonardi.DB, for example, in which
the diagram type ‘Aristotelian diagram’ or ‘Square of Opposition’ is precisely
specified and fed with many data sets [42].

3.9 Multimodal Perception of Emotional Expression in Voices and
Faces by Cochlear Implant Users

In emotion perception research, the ongoing development of more sophisticated
AI holds considerable promise for enhancing its ability to learn complex pat-
terns in emotional expression. AI can analyze emotional expressions in voices
and faces through techniques like machine-learning-supported acoustic analysis
(e.g., [45]), natural language processing (NLP), and computer vision. As AI sys-
tems continue to advance, they are anticipated to improve in their ability to
integrate information from multiple modalities (including voice tone, facial ex-
pressions, and body language). Moreover, there is a prospect for AI systems to
even become better at understanding and interpreting emotions in context, con-
sidering situational factors that influence emotional expression. Advancements in
processing speed and hardware capabilities may further empower AI systems to
perform real-time emotion analysis - a development which, for instance, would be
an important advancement in applications, such as human-computer interaction,
virtual assistants, and emotion-aware technologies. Notably, a new empirical ap-
proach utilizes AI to investigate so-called neural decoding. This approach uses
multivariate analyses of brain recordings to permit emotion classification (e.g.,
for vocal, facial, or video stimuli) on the basis of a perceiver’s brain activity (e.g.,
[126]).

https://leonardi.logicalgeometry.org/
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At the same time, ongoing research in AI may lead to improved cochlear
implants (CIs) - sensory prostheses designed to provide auditory sensations to
individuals with severe-to-profound hearing loss by directly stimulating the au-
ditory nerve. This is achieved through (1) recording sound via a microphone,
then (2) transforming the sound into electrical signals via a sound processor,
(3) transmitting these magnetically through the scull to an intracranial receiver,
and (4) feeding them into a limited number of stimulation electrodes (typically,
6-22) which are surgically implanted into the cochlea. In general, improved AI
might result in more sophisticated signal processing algorithms that enhance
both speech intelligibility and sound quality for CI users. Moreover, AI might
play a role in tailoring CI settings to individual users based on their unique audi-
tory profiles, leading to improved outcomes and user satisfaction. AI can also be
used to develop personalized and adaptive programming strategies for CIs based
on individual CI user’s responses and preferences. In fact, similar approaches
may also be pursued in the context of vision impairment [117].

However, while AI has made significant strides in understanding emotional
expressions in both voices and faces, the ability to fully comprehend how CI
users perceive these emotional cues remains a complex challenge. This is because
understanding the subjective experience of CI users involves several factors:

1. Sensory Perception: Hearing with a CI is electronic, not biological, and can
sound very different than “normal” biological hearing. Because a CI only en-
ables rudimentary hearing, the human brain must learn to process the input
via cortical plasticity – which in this case refers to adaptations of the brain
to deprivation-induced altered sensory input in one but not other sensory
modalities. Thus, understanding how CI users perceive vocal emotions, and
how vocal and facial emotions are integrated into their perceptual systems
[50], requires considering how their brain interprets the signals provided by
the device.

2. Individual Variability: Perception of emotional cues can vary greatly among
CI users, presumably due to a multitude of factors that include age of im-
plantation, duration of deafness, auditory rehabilitation, and CI hardware
and software. However, these huge interindividual differences and their in-
fluencing factors are not fully understood and remain part of ongoing CI
research [51]. In this context, we anticipate that emerging efforts to estab-
lish central CI registries (e.g., [195]) will be instrumental to promote the
(currently lacking) multi-center studies with large numbers of participants
that are essential to identify the relative contributions of multiple factors for
rehabilitation outcome.

Whereas AI can help analyze large datasets of CI users’ responses in com-
puter experiments that test their perceptual abilities to recognize vocal and facial
emotions (both with unimodal and multimodal stimuli), understanding the sub-
jective experience of emotion perception requires more than just data analysis.
It involves interdisciplinary research combining insights from neuroscience, psy-
chology, linguistics, and AI. In the absence of appropriate contextualization, AI
technology may well produce misleading results.
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Researchers are working on developing AI systems that can better understand
and adapt to individual differences in sensory perception, including those of CI
users. However, a complete understanding of how CI users perceive emotional
voices and dynamic moving faces remains an ongoing challenge for research in
this area.

3.10 Multimodal Modeling from a Dynamic Perspective

AI can be put to several uses, in general as well as in the context of multimodality
(cf. Section 3.3):

– AI as tool – here the focus is on automatized task solving like, in the context
of multimodal data, pre-processing and/or annotation.

– AI as companion – here the focus is on AI for social or information-seeking in-
teraction. It is within this focal area that the behavior of AI can be compared
to human behavior (Turing test). One challenge posed by multimodality as
studied within ViCom (see Section 1.2) is that it requires to proceed from
purely verbal T2 systems to sensorimotor, robotic T3 systems, that are able
to actually produce and perceive multimodal behavior in the first place [82].

– AI as cognitive modeling – here the focus is on AI as an implemented model
of cognition, that is, reverse engineering of neuro-cognitive capabilities.

Given the predominantly data analytic perspective spelled out in the previous
section, we are mainly concerned with the first two foci, AI as a tool or as a
companion. We touch on the second and third areas again in Section 4.

In light of the analyses in Section 3.1–Section 3.4, the following picture
emerges regarding the dynamics of multimodal modeling in the context of ever-
improving AI: A central aspect of the automation gap described by the projects
concerns the mapping of multimodal data to linguistic models to explicate the
underlying (e.g., syntactic, semantic, or pragmatic) structures. This mapping,
like any modeling, is characterized by a number of informational uncertainties
that take on a special character in the context of the underlying linguistic the-
ories. We are dealing, so to speak, with a line that leads from the respective
(1) primary data via their representation by means of (2) secondary or tertiary
data and various intermediate representations to the (3) theoretical concepts
of an already developed or still to be developed theory. In this way, several
points of reference for the uncertainties described so far can be identified. The
reason for this is that this chain of terms (data-driven, inter-representational,
theory-driven) is linked to a series of decisions whose uncertainties determine the
relationship between theory and data. Without suggesting a preferred direction,
we choose the bottom-up variant in our enumeration of uncertainties, starting
with the data:

1. Primary data: Instead of assuming that the data streams relevant for multi-
modal computing are predetermined per se, we can assume a wider range of
possibilities beyond the established paths in linguistics. This range beyond
the usual suspects (such as eye-tracking data and audio or video recordings)
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concerns possibilities that arise not only from the use of interfaces with ever-
increasing resolution. Rather, it concerns the possibilities of advanced data
collection devices such as motion capture suits or full body trackers for VR,
biometric sensors, EEG headbands (electroencephalography), EMG devices
(electromyography), skin conductance sensors, or gait analysis technologies.
The point is that ever new data along ever new data streams promotes
bottom-up approaches, which make data exploration preferable to theory-
driven top-down approaches. However, this could lead to a gradual deval-
uation of theoretical approaches along a technological process that guides
data selection without theoretical embedding: it is then a technology-driven
view of multimodal data rather than a theory-driven one. Thus, we face a
data-related decision space that concerns the data types to be analyzed for
multimodal modeling and the streams that instantiate them (in terms of sub-
types and their resolution). In a positive sense, this data space increases the
opportunities for purely exploratory, data-driven approaches as it continues
to expand. In a negative sense, this creates pressure for theory development,
on the basis of which, for example, we should be able to substantiate the
formation of multimodal ensembles that can be found in the corresponding
data streams.

2. Intermediary representation: For the success of AI technologies for modeling
processes of multimodal fusion and fission, it is crucial that data from each
modality are mapped into the same representation space based on the same
(usually vectorial, numerical) representational terms. The more modalities
are to be mapped, the more heterogeneous the provenance of such repre-
sentations becomes, which, due to their representational homogeneity, can
be directly related, linked or amalgamated. In the modeling chain described
above, we mentioned the special role of representations between primary
data and theoretical terms. The problem that arises at this point is that
by relying on established representation models from computer science, the
linguistic modeler adopts (even if only implicitly) a modeling language that
does not necessarily meet his representational requirements (e.g. with re-
gard to closeness to theory, theoretical grounding or motivability and ex-
plicitness). Once again, the modeler is confronted with a decision space in
which actors from outside his discipline become active and, due to their
disciplinary background, decide on representation issues that might be in-
comprehensible to him. From an exploratory point of view, this may be
tempting (taking away the modeling decisions “to see what the computer
does with the data”). However, the uncertainties involved increase with the
success of such approaches, because the connection between data and theory
is designed and controlled independently of the latter – possibly without any
attempt to connect to a theory. LLMs, for example, are based on so-called
subwords, which are selected from a large corpus according to roughly two
criteria: they should occur as often as possible and make up the character
stream of the corpus as completely as possible. Transformer models trained
on such vocabularies are known to be very successful, even if the resulting
subwords have nothing or very little in common with linguistically motivated
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word forms or affixes. A representation gap occurs when the modeler refers
to word forms as theoretical terms, even though they no longer play a role
in the modeling used. This gap is all the greater in areas such as multimodal
computing, where there is already theoretical uncertainty about the relevant
“multimodal subwords”. Thus, exploratory approaches based on heuristics
around “multimodal subwords” and the modeling of their similarity and con-
tiguity associations using neural networks should be strictly accompanied by
theoretical approaches that take a closer look at the representational terms
of multimodal computing.

3. Theory formation: The third level concerns the theoretical terms, for which
we are primarily interested, in the light of the project descriptions in Sec-
tion 3.1–Section 3.4, in the aspect of their openness or change in the course
of their confrontation with the data. More precisely, this is about situations
in which the annotation of multimodal data makes the modeler aware of the
inadequacy of his theoretical terms, which makes the modification of these
terms indispensable. The crucial question is the openness of the theory to
such perturbations, or the degree of its changeability and adaptability, or the
flexibility of the theoretical terms. We can ask, for example, whether such
adaptations are merely a matter of rearranging the terms, adding additional
labels for classes or relations, or whether the required changes are more ex-
tensive, calling into question the validity of the terms as a whole, which could
ultimately lead to their abandonment, alternatively following a data-driven
bottom-up approach. Thus, while under (1) and (2) we are dealing with ques-
tions of informational uncertain one-to-many mappings between data types,
data streams, and data resolutions on the one hand, and their secondary or
n-ary representation on the other, (3) is about the temporal dynamics of the
underlying theories as a result of multimodal modeling, which may lead to
re-entering the data-representation-theory circle again and again.

The project descriptions all referred to a special term that we called multi-
modal ensemble in Section 3.4. In light of the three-part chain described so far,
this term itself can be located at three levels: (1) At the data level, we can seg-
ment a (vertically ordered) time slice of our (horizontally ordered) input data
streams to qualify it as a manifestation of a particular ensemble (using some
annotation software). (2) At the representation level (assuming a unified vec-
tor space model), one can ask which vector operations, starting from the vector
representations of its elementary monomodal representations, generate which
representation of the latter ensemble as a unit that can be related to which
other units in the same representation space (this is ideally done completely
automatically). (3) On the theoretical level, questions about the status of such
ensembles are addressed in theoretical terms. For example, how the composi-
tion of an ensemble allows the suspension of certain (optional) modalities, while
other modalities are obligatory. (4) As a unifying question for all these levels, one
might ask to what extent repeated concomitances of multimodal data streams
condition the constitution of a distinguishable multimodal ensemble, which as a
whole becomes (syntagmatically) combinable or (paradigmatically) interchange-
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able with other ensembles as if they begin to take on properties of gestalts or
even signs.

According to the variety of decisions that have to be made to be able to
address multimodal ensembles as observables of a theory of multimodal commu-
nication, the statistical connections of the first three levels, as addressed by level
(4), are characterized by uncertainties to which linguistic research is expected
to provide answers, without expecting that AI will replace this research. Thus,
while a primarily bottom-up approach runs the risk of following positivism that
over-interprets the data streams that, for whatever reason, are technically avail-
able as direct access to multimodal ensembles, a primarily top-down approach
runs the risk of developing concepts without an empirical foundation that are
likely to require modifications and adjustments all too quickly in the course of
confrontation with the data.

The detection of feedback behavior Section 3.6 can be taken as an example
here: From a linguistic point of view, the recognition of such behavior and its se-
mantic interpretation requires recourse to the respective conversational context,
possibly even to the underlying conversational history. Assuming the context
model of transformers, these examine context windows based on the underlying
subword vocabulary, with the respective conversation appearing as a stream of
subwords (and their vector representations) that is traversed window by win-
dow. Despite the efficiency of this approach, it is clear that with the window
width and the focus on subwords, we are using a context model that undermines
the flexibility of human context interpretation. For example, the interpreter may
discover ad hoc ensembles in the conversation that make it possible to classify
a behavior as feedback in the first place. Such an ensemble would manifest a
kind of firstness, of which it cannot be assumed that a generative AI has seen
enough training examples to identify the function associated with it, especially
if the data streams to which it has access undermine the streams that a human
perceives. The AI then does not “see” the ensemble in question (e.g. as a set
or sequence of multimodal subwords). Conversely, however, we will follow a hu-
man interpretation only if our theory provides concepts that allow us to model
such ensembles and thus create the conditions for their empirical and system-
atic observation. Human interpretation may be flexible and open, but for our
theoretical purposes, we need a controllable approach that ensures the intersub-
jectivity of interpretation. At this point, which is characterized by the tension
between contextual fixity and the lack of flexibility of automated methods on the
one hand, and contextual openness with little formal commitment on the other,
an approach comes into play that is able to integrate these two perspectives. At
this point, we are thinking of an approach from the field of human computation,
more precisely from the spectrum of evolutionary approaches [110], in which man
and machine take on the functions of innovation and selection, thus each acting
in a dual role [142], but in such a way that, as this interaction evolves, theory
formation is simultaneously driven primarily by humans, while the machine fo-
cuses on optimizing the exploration of data streams and their representations,
thereby bridging between data and theory.
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4 Long-Term Obstacles

A fundamental prerequisite for contemporary AI systems are the need for train-
ing with relevant data before they can effectively process a problem (cf. Sec-
tion 2). If a system has not seen the relevant data in any form, it cannot process
it. To illustrate this, consider a model that is trained only on text data and
therefore cannot be extended to image data or data from other modalities. Such
models can therefore not solve application problems for which no measurable
data is available, even in the long term. This concerns data as diverse as those
from neuronal voxel measurements, inner monologues, or past events that have
never been recorded and cannot be retrospectively constructed. In other words, it
is unlikely that a generative AI will be able to read minds by being shown videos
of non-speaking faces; nor is it likely that prompts will be contextualized by past
events for which there are no recordings. And monitoring neural processes and
structures currently seem to be limited to cellular resolution [215,161].

To think beyond such usual suspects for examples of unattainability by gen-
erative AI, one can think of several other candidates. Whatever comes to mind
in this context, one has to face the situation that the corresponding research
will generate significant amounts of documents that will essentially serve as a
training base for generative AI to do both: link the new data with the data it
already has access to (i.e., embed it in its representation space(s)), and play
its statistical game to produce meaningful, well-interpretable texts in response
to prompts for the supposedly untapped field of application. This consideration
makes it difficult to identify problems that current generative AI will definitely
not be able to overcome, even in the very long term.

To make this point very clear: language is a tool that is used to exchange
information, which can relate in particular to things that are not present in the
immediate, perceptible environment. Even if AI has no access to some primary
data, it becomes able to recognize and respond to topics corresponding to in-
accessible sources if there are written testimonials describing such data. Think
of historical works narrating the past, diaries which reveal the author’s inner
episodes, or science fiction novels describing otherworldly scenarios23. With re-
spect to multimodal research this means that the more papers published, the
more text data for AI. If this is true, then there is just one way to constrain AI
systems: Don’t feed the AI! In fact, there are a couple of conceivable circum-
stances that might lead to this effect.

One positive development is that AI systems are suddenly solving tasks that
humans were previously unable to solve. But in combination with these systems,
people then develop a new understanding of precisely these tasks and continue
to develop (e.g. Chess [179], Go [192]). However, it also has the opposite effect,
in that these systems destroy the data basis on which they were trained. One of

23 This despite the AI being caught in a symbolic cycle, lacking the possibility to break
out of the “web of words” by means of grounding symbols in experience [81].
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the best-known examples is the impact of ChatGPT on Stack Overflow, where
Stack Overflow traffic dropped significantly after the release of ChatGPT.24

Another direction of this development could be that the internet will be
flooded with more and more automatically generated data, which will become
less and less distinguishable from human-generated data as these systems im-
prove [178]. This means that future models will be trained more and more on
self-generated data, which could also lead to an expected decline in model per-
formance.

In a similar manner, communication spaces might come into existence, that
exclude AI chatbots. This can happen in response to social media platforms that
are more and more overtaken by dialogical AI systems while human user want to
interact with other human users. Communication going on in the new, AI-free
channels will then be out of the recognitional reach of the AI systems.

In addition to these social effects, political effects are also to be expected, for
instance, that certain data is no longer legally accessible, or may no longer be
used for the training of LLMs. In the long run, such effects may be much more
influential and relevant to the development and improvement of AI models than
the actual development of these systems.
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